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Introduction and Case Description

Conflicting views exist on the role of the Saharan Air Layer (SAL) pre- and post-genesis (Karyampudi and Carlson 1988;
Dunion and Velden 2004; Zhang et al. 2007, 2009; Braun 2010; among others). Early dust-impact studies claimed negative
impacts, but had unrealistic dust distributions (Zhang et al. 2007, 2009). More recent work with more realistic dust distributions
suggest possible positive impacts in some cases (Herbener et al. 2014). In this study, we look at the impact of Saharan dust
on the evolution and intensity of Hurricane Nadine (2012) observed during the first Hurricane and Severe Storm Sentinel
(HS3) campaign.

Instruments on the NASA Global Hawk

/—
Advanced Vertical Atmos. Profiling System (AVAPS) ~
Scanning High-resolution
Interferometer Sounder (S-HIS)

Cloud Physics Lidar (CPL)

HS3 flights of interest:
Sept. 11-12, Nadine is a TS with SAL air advancing around northern side
Sept. 14-15, Nadine becomes a hurricane with SAL on eastern/northern sides

NUWRF Model and Simulation Description

NASA Unified WRF \ Aerosol-Microphysics Coupling (Shi et al. 2014)

I (Goddard 5-class 3-ice microphysics scheme only)
[\maF Dynamic Core]——l Goddard SDSU | 7 « CCN based on Koehler curves (Koehler et al.,
e

2006; Andreae and Rosenfeld, 2008)
WRF Chem * IN based on Demott et al.(2010)
+ Both CCN and IN are diagnostic parameters only

land-
atmosphere
interactions

'

Seasalt 3

Black
Carbon

surface emission
and albedo

Aerosol-Radiation Coupling (Shi et al. 2014)
(Goddard LW/SW radiation schemes only)
* Aerosols predicted from WRF-Chem/GOCART are

Organi
Carbon

Sulfate used to calculate radiative parameters to account for
Mace aerosol scattering and absorption effects in the
atmosphere.

Physics: Simulation details:

e Grell-Freitas ensemble Cu « Resolutions: 27, 9 and 3 km
parameterizaton - Grid sizes: 601X421, 802X655,

» Goddard microphysics 3-ice with 832X931, and 61 vertical layers
aerosols

» Starting time: 00Z 09/10/2012

» Ending time: 00Z 09/17/2012

* Initial and Boundary Conditions:
— NCEP/GFS except SST
— SST from ERA-Interim

e 2014 Goddard radiation schemes for
both longwave and shortwave

e YSU Boundary Layer scheme

e Monin-Obukhov (MM5) surface layer

* Unified Noah land-surface model

 Name | Description __________________________________ NTL

Summary of experiments. The default

CNTL No aerosols _
AMR1 Aerosols acting as CCN and IN, both microphysical and radiative coupling Ver.S|0n of N.UWRF allows dust to act
as ice nuclei (IN), but not cloud
AMR2 Aerosols acting as IN only, both microphysical and radiative coupling condensation nuclei (CCN). Here, we
AM1 Aerosols acting as CCN and IN, microphysical coupling only ngl\cl:ases with and without dust as
AR1 Aerosol radiative coupling only '
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(AOD>0.7). The question for this poster, did the dust slow or delay intensification of Nadine?
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Above: Simulated AOD for ARM1 (shading) and sea-level pressure (contours) for times (12 UTC) corresponding to the
approximate times of the MODIS images above. The WRF simulation captures the evolution of AOD quite well.

Comparisons to HS3 Data
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Above: (Left) September 11-12 GH flight track. Yellow-orange

segments correspond to the CPL image (top-right) where the
orange shaded region corresponds to the orange line.
(Middle) Simulated 900-hPa radar reflectivity, winds, and dust
boundary (AOD=0.2) at 0100 UTC September 12. Red line
indicates the location of the vertical cross section (bottom-
right) of dust mass (shading) and total hydrometeor content

(contours).

Lower section: (Left) Dropsonde-derived 800-hPa 6e and
storm-relative wind barbs. Dropsonde positions adjusted for
storm motion and dropsonde drift for a reference time of 00
UTC 15 September. (Right) Simulated 800-hPa 6e (shading),
simulated radar reflectivity (black contours at 15, 30, 45 dBZ),
and 0.2 AOD boundary (red) from the AMR1 simulation at 00
UTC September 15. Reflectivity and AOD fields have been

smoothed to improve readability.
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The Impact of Saharan Dust on Simulated Intensity and Track
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Above: All simulated tracks suggest weaker environmental westerly winds compared to observations, particularly after 96
hours. The weaker environmental westerlies likely resulted in weaker vertical shear and storms that are stronger than
observations after 96 h. While there is a slight weakening in intensity in terms of MSLP in some of the aerosol cases (primarily
associated with microphysical effects) after 96 h, the maximum winds are not consistently different than the control run.

Impact of Saharan Dust on Wind Structure
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Above: Simulated wind speeds at 950 hPa at 114 h (top row) and 132 h (bottom row) for the indicated experiments. Through
90 h, wind structures were only slightly different (not shown), but differences emerge by 96 h and continue to grow at later
times (above). The case with both the microphysical and radiative coupling with dust tends to produce a smaller and
generally weaker storm. The cases with only radiative coupling and only microphysical coupling do not “combine” to match
the case with both.

Conclusions

Significant dust impacts do not emerge until after ~5 days of simulation. Inclusion of dust impacts improves the simulated
tracks, but impacts on storm intensity show considerable variability. If one considers the full wind structure rather than the local
(point) measurement of intensity, then the dust impact (both microphysical and radiative) was to weaken the storm. However,
when dust impacts on microphysics or radiation are evaluated separately, no consistent weakening of the storm is found.
Because stochastic processes may be leading to some of the differences, ensemble simulations for CNTL and AMR1 will be
performed for future studies.



